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let or Neumann boundary conditions on all boundaries.
The choice of elliptic models to generate curvilinear coor-The paper describes the development and application of a new

approach for formulating an elliptic generation system on paramet- dinates is well known; see Thompson et al. [18]. Since
rically defined surfaces. The present derivation of the surface equa- elliptic partial differential equations determine a function
tions proceeds in two steps: First, conformal mapping of smooth in terms of its values on the entire closed boundary of asurfaces onto rectangular regions is utilized to derive a first-order

region, such a system can be used to generate the interiorsystem of partial differential equations analogous to Beltrami’s sys-
tem for quasi-conformal mapping of planar regions. Second, a gen- values of a surface grid from the values on the sides. An
eral elliptic generation system for three-dimensional surfaces, in- important property is the inherent smoothness in the solu-
cluding forcing functions, is formulated based on Beltrami’s system tions of elliptic systems. As a consequence of smoothing,
and quasi-conformal mapping. The resulting elliptic system is

slope discontinuities on the boundaries are not propagatedsolved using an iterative method on arbitrary surfaces represented
into the field. Variational methods can also be used in theanalytically by rational B-splines. The overall effect of this approach

is a reliable and versatile elliptic method for generating and improv- construction of curvilinear coordinate systems; see Knupp
ing surface grids. Examples will be presented to demonstrate the and Steinberg [7]. These methods have been extended to
application of the method in constructing practical grids. Q 1996 surface grid generation by Knupp [8] and Saltzman [14].
Academic Press, Inc.

Early progress on the generation of surface grids using
elliptic methods has been made by Warsi [19, 20] and
Thomas [16]. The proposed generation system and the1. INTRODUCTION
surface equations obtained by Warsi were based on the

For the past decade or so, there has been a great deal fundamental theory of surfaces from differential geometry,
of interest in the field of numerical grid generation as which says that if there exists a surface, then the surface
an essential element of the numerical solution of partial coordinates must satisfy the formulas of Gauss and Wein-
differential equations on arbitrary regions. Not only the garton. On the other hand, the same generation system
grid must be generated for the region of interest, but grid was derived by Thomas based on the three-dimensional
quality in terms of smoothness, skewness, and orthogonal- Poisson’s partial differential equations. However, imple-
ity must be achieved which can maintain the same level of mentation of these systems to construct surface grids on
accuracy as the accuracy of the method used in solving the arbitrary surfaces in a general purpose grid generation
physical problem (e.g., the Navier–Stokes equations). code remains a major issue due to the lack of common

Conformal mappings have been used to generate orthog- mathematical representation for both standard analytical
onal boundary-fitted coordinates in two-dimensions for shapes and free-form surfaces.
solving various problems in simply connected regions (see, The main focus of the present work is to employ confor-
e.g., Ryskin and Leal [13] and Tamamidis and Assanis mal mapping to develop a new methodology for generating
[15]). In particular, Mastin [10], Thompson et al. [17], and curvilinear coordinates on arbitrary surfaces. We begin
Winslow [21] have developed their elliptic generation sys- our study by exploring the basic properties of conformal
tems based on harmonic mapping borrowed from the prop- mapping from two-dimensional regions to three-dimen-
erties of conformal transformation between the physical sional surfaces. After the basic concepts have been intro-
and the computational regions to produce smooth grids. duced, we begin our discussion of the relationship and

Indeed, an efficient method for constructing curvilinear the connection between the derived equations based on
coordinates is to let the coordinates be the solutions of an conformal mapping and those derived for planar regions
elliptic system of partial differential equations with Dirich-

based on quasi-conformal mapping to formulate the gener-
ation equations for the surface case. In later sections theThe U.S. Government’s right to retain a nonexclusive royalty-free
numerical procedure of mapping and constructing thelicense in and to the copyright covering this paper, for governmental

purposes, is acknowledged. physical, as well as the parametric coordinates, is described.
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The effectiveness of the method is demonstrated via the Using the chain rule for differentiation, the physical deriva-
tives are expanded asgeneration of smoothed surface grids on real-world geome-

tries.
sj 5 suuj 1 svvj ,

2. CONFORMAL MAPPING ON SURFACES sh 5 suuh 1 svvh ,

sjj 5 suuu2
j 1 2suvuj vj 1 svvv2

j 1 suujj 1 svvjj , (2.6)A conformal mapping of a smooth bounded surface onto
a rectangular region can be constructed by establishing a

sjh 5 suuuj uh 1 suv(uj vh 1 uhvj) 1 svvvj vh 1 suujh 1 svvjh ,mapping from a square region of the computational plane
onto the surface which is orthogonal and has a constant shh 5 suuu2

h 1 2suvuhvh 1 svvv2
h 1 suuhh 1 svvhh .

aspect ratio. The advantage of conformal coordinates are
well known; for example, problems involving heat conduc- Thus, the system of equations in (2.4) and (2.5) is equiva-
tion, ideal fluid flow, and electric fields can be solved as lent to
easily on the surface as they can on a rectangular region

x2
uuj uh 1 xuxv(uj vh 1 uhvj) 1 x2

vvj vhin the cartesian plane. Also this approach brings out the
intrinsic orthogonality and uniformity properties that are

1 y2
uuj uh 1 yuyv(uj vh 1 uhvj) 1 y2

vvj vh (2.7)inherent in a grid generated by such a mapping. Another
advantage of using conformal coordinates on parametric 1 z2

uuj uh 1 zuzv(uj vh 1 uhvj) 1 z2
vvj vh 5 0

surfaces for solving elliptic partial differential equations is and
the fact they permit solutions of differential equations on
surfaces with the same ease as they can be solved on a F 2(x2

uu2
j 1 2xuxvuj vj 1 x2

vv2
j 1 y2

uu2
j 1 2yuyvuj vj 1 y2

vv2
j

rectangle in the cartesian plane.
1 z2

uu2
j 1 2zuzvuj vj 1 z2

vv2
j )

(2.8)In classical differential geometry, a surface S is viewed
as a mapping from R2 to R3. Consequently, parametric 5 x2

uu2
h 1 2xuxvuhvh 1 x2

vv2
h 1 y2

uu2
h

surfaces (physical variables) are defined in terms of para-
1 2yuyvuhvh 1 y2

vv2
h 1 z2

uu2
h 1 2zuzvuhvh 1 z2

vv2
h .metric variables. In grid generation, parametric variables

are defined in terms of computational variables, i.e.,
The above equations are combined to give the complex
equations 5 (x, y, z) 5 (x(u, v), y(u, v), z(u, v)),

(2.1)
(u, v) 5 (u(j, h), v(j, h)). (x2

u 1 y2
u 1 z2

u)(F uj 1 iuh)2

1 2(xuxv 1 yuyv 1 zuzv)(F uj 1 iuh)(F vj 1 ivh) (2.9)A rectilinear grid in the computational square generates
a curvilinear grid in the parametric square which maps to 1 (x2

v 1 y2
v 1 z2

v)(F vj 1 ivh)2 5 0.
a curvilinear grid on the surface. Thus, a uniform grid in
the computational space generates a curvilinear grid on the This equation can be put into a compact form
surface. The elliptic system of partial differential equations
which defines the transformation between computational g11Z 2 1 2g12ZW 1 g22W 2 5 0, (2.10)
variables and parametric variables is related to conformal

wheremappings on surfaces.
A surface grid generated by the conformal mapping of

g11 5 su ? su 5 x2
u 1 y2

u 1 z2
u ,a rectangle onto the surface S is orthogonal and has a

constant aspect ratio. These two conditions can be ex- g12 5 su ? sv 5 xuxv 1 yuyv 1 zuzv ,
(2.11)pressed mathematically as the system of equations

g22 5 sv ? sv 5 x2
v 1 y2

v 1 z2
v ,

sj ? sh 5 0 (2.2) Z 5 F uj 1 iuh , W 5 F vj 1 ivh .
F usju 5 ushu, (2.3)

Solving the quadratic equation (2.10) either for Z or W,
say Z, we havewhere F is the grid aspect ratio. These two equations can

be rewritten as

Z 5
2g12 6 Ïg 2

12 2 g11g22

g11
W (2.12)

xj xh 1 yj yh 1 zjzh 5 0 (2.4)

F 2(x2
j 1 y2

j 1 z2
j ) 5 x2

h 1 y2
h 1 z2

h . (2.5) or in terms of u and v
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which maps the (u, v) in the parameter space onto (j, h)
F uj 1 iuh 5

2g12 6 iJ
g11

(F vj 1 ivh), (2.13) in the computational space and the real and the imaginary
parts of c satisfy Beltrami’s system of equations

where J 5 Ïg and g 5 g11g22 2 g 2
12 is the Jacobian of the

Mhv 5 dju 1 ejv (3.2)mapping from the parametric space to the surface. Multiply
the right-hand side of the above equation and equate the

2Mhu 5 eju 1 fjv , (3.3)
real and the imaginary parts to get the two real equations

where d, e, and f are functions of u and v with a, c . 0
and satisfy the equation df 2 e2 5 1. The quasi-conformalF uj 5 2

g12

g11
F vj 6

J
g11

vh (2.14)
quantity M is invariant and often referred to as the module
or the aspect ratio of the region of consideration. For

uh 5 6
J

g11
F vj 2

g12

g11
vh . (2.15) further study of the theory and application of quasi-

conformal mappings, we refer to Ahlfors [1] and Renetl
[12].The above system of equations can be expressed in the

It is the system of Eqs. (3.2) and (3.3) which formsform of the first-order elliptic system
the basis of general elliptic grid generation for the two-
dimensional case; see Mastin and Thompson [9]. An earlierF uj 5 avh 2 buh (2.16)
approach was proposed by Belinskii et al. [3] and Godunov

F vj 5 bvh 2 cuh , (2.17) and Prokopov [5] to handle the problem of quasi-confor-
mal mappings to construct curvilinear grids.

where The procedure for the surface case proceeds in a similar
fashion. The first task is to invert the system of Eqs. (2.16)
and (2.17); that is, to develop an equivalent system soa 5 2

g22

6J
,

that the computational variables (j, h) are dependent
variables and the parametric variables (u, v) become the
independent variables. Let the computational variablesb 5

g12

6J
, (2.18)

be

c 5 2
g11

6J
. j 5 j(u, v),

h 5 h(u, v).
(3.4)

Note that ac 2 b 2 5 1 which is sufficient for ellipticity.
The sign 6 needs to be chosen such that the Jacobian Assuming that j and h are twice continuously differenti-

able and the Jacobian of the inverse transformation J 5
J 5 uj vh 2 uhvj . 0. (2.19) uj vh 2 uhvj is nonvanishing in the region under consider-

ation. Then the metrics (‘‘uj , uh , vj , vh’’) and (‘‘ju , jv , hu ,
The quantities g11 $ 0 and g22 $ 0 by definition, so choosing hv’’) are uniquely related by
the negative sign will make a $ 0 and c $ 0. From
Eqs. (2.15) and (2.16), we see that F J 5 F (uj vh 2 uhvj) 5

ju 5
vh

J
, jv 5 2

uh

J
,

(3.5)
av2

h 2 2buhvh 1 cu2
h and b2 5 ac 2 1, implies that b 5

Ïac 2 1 , Ïac and F J . av2
h 2 2Ïacuhvh 1 cu2

h 5
(Ïavh 2 Ïcuh)2 $ 0 and, hence, J . 0. hu 5 2

vj

J
, hv 5

uj

J
.

3. FORMULATION OF THE ELLIPTIC GENERATOR
Using these quantities in Eqs. (2.15) and (2.16) so

In this section, a complete formulation of a second-order that the parametric variables become the independent
quasi-linear elliptic system will be established, based on variables, the system can be expressed either in the
conformal mapping. First, we start with a brief overview form
of quasi-conformal mapping of planar regions. In two di-
mensions there is a close relationship between grid genera- F hv 5 aju 1 bjv (3.6)
tion and quasi-conformal mapping. This can be seen by

2F hu 5 bju 1 cjv (3.7)establishing a homeomorphism

c(u, v) 5 j(u, v) 1 ih(u, v) (3.1) or
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ju 5 F (chv 1 bhu) (3.8)
A 5

g22vjj 2 2g12vjh 1 g11vhh

JJ 3
2

D2v

JJ
,

2jv 5 F (ahu 1 bhv). (3.9)

B 5
g22ujj 2 2g12ujh 1 g11uhh

JJ 3
2

D2u

JJ
,The first-order elliptic systems are analogous to Bel-

trami’s system of equations for quasi-conformal mapping
g11 5 sj ? sj 5 g11u2

j 1 2g12uj vj 1 g22v2
j ,

(3.18)
of planar regions. The relation between quasi-conformal
transformation and elliptic grid generation can be seen by g12 5 sj ? sh 5 g11uj uh 1 g12(uj vh 1 uhvj) 1 g22vj vh ,
utilizing the system of Eqs. (3.6)–(3.9). Indeed, the above

g22 5 sh ? sh 5 g11u2
h 1 2g12uhvh 1 g22v2

h .systems can be easily uncoupled to the second-order ellip-
tic system,

Solving (3.16) and (3.17) for A and B, we have
ajuu 1 2bjuv 1 cjvv 1 (au 1 bv)ju

A 5 2
1
J

[Fvj 1 Cvh],
(3.19)

1 (bu 1 cv)ju 5 0 (3.10)

ahuu 1 2bhuv 1 chvv 1 (au 1 bv)hu

B 5 2
1
J

[Fuj 1 Cuh].
1 (bu 1 cv)hv 5 0. (3.11)

From the above equations, we see that u and v areFrom these equations, it follows that the computational
solutions of the quasi-linear elliptic systemvariables j and h are solutions of a second-order elliptic

system (3.10) and (3.11). In fact, j and h are solutions of
g22(ujj 1 P uj) 2 2g12ujh 1 g11(uhh 1 Q uh) 5 J 2 D2u, (3.20)the following second-order linear elliptic system with F 5

C 5 0, g22(vjj 1 P vj) 2 2g12vjh 1 g11(vhh 1 Q vh) 5 J 2 D2v, (3.21)

g22juu 2 2g12juv 1 g11jvv 1 (D2u)ju 1 (D2v)jv 5 F (3.12) where

g22huu 2 2g12huv 1 g11hvv 1 (D2u)hu 1 (D2v)hv 5 C, (3.13)
P 5

JJ 2

g22
F,

(3.22)the Beltramians D2u and D2v have been multiplied by J 2

as follows:
Q 5

JJ 2

g11
C.

D2u 5 J(au 1 bv) 5 J F ­

­u Sg22

J
D2

­

­v Sg12

J
DG (3.14) To this end, We have demonstrated the use of conformal

mapping onto surfaces to derive the basic elliptic genera-
tion system given by (3.20) and (3.21). As mentioned pre-

D2v 5 J(bu 1 cv) 5 J F ­

­v Sg11

J
D2

­

­u Sg12

J
DG. (3.15) viously, the same equations to generate surface coordinates

have been derived by Warsi [19, 20] from the formulas of
Gauss and Weingarten from differential geometry and byIt is this system which forms the basis of the elliptic
Thomas [16] from three-dimensional Poisson’s partial dif-methods for generating surface grids. The source terms (or
ference equations. It should be noted that the same systemcontrol functions), F and C, are added to allow control
is used to generate the surface (face) grids for a volumeover the distribution of grid points on the surface. In the
grid in three dimensions such that the computational coor-computation of a surface grid, the points in the computa-
dinates (j, h, z) are taken in an orthogonal cyclic order.tional space are given and the points in the parametric

A few remarks on this system are in order. It is evidentspace must be computed. Therefore, in implementation of
that the system is applied to the parametric variables ua numerical grid generation scheme, it is convenient to
and v. However, the metric coefficients are solved simulta-interchange variables again so that the computational vari-
neously on both the parametric and physical regions, whereable j and h are the independent variables. Introducing
the right-hand side terms are solved on the physical region.(3.5) in (3.12) and (3.13), the transformation is reduced to
Also, the solution of the system requires an initial grid tothe system of equations
be constructed.

2Auj 1 Bvj 5 C, (3.16)
4. IMPLEMENTATION AND NUMERICAL RESULTS

Auh 2 Bvh 5 F, (3.17)
One of the challenging issues in the area of elliptic sur-

face grid generation is not only that the grid needs to bewhere
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smoothed, but to ensure that the resulting grid points must The advantage of using a NURBS-based geometry defi-
nition is the ability to represent both standard analyticstay on the surface. With this objective in mind, the efficient

approach of constructing a smooth grid is to work in the shapes (e.g., conics, quadrics, surfaces of revolution, etc.)
and free-form curves and surfaces. Therefore, both analyticparametric space rather than in the physical surface. How-

ever, there are some disadvantages associated with this and free-form shapes are represented precisely, and a uni-
fied database can store both. Another potential advantageapproach. The differential equations become more compli-

cated and contain two sets of derivatives, the derivatives of using NURBS, is the fact that positional, as well as
derivative, information of surfaces, required for the ellipticof the physical variables with respect to the parametric

variables (‘‘xu , xv , yu , yv , zu , zv , xuu , xuv , xvv , ...’’) and the grid generator, can be evaluated analytically. For a detailed
discussion of NURBS curves and surfaces and their rele-derivatives of the parametric variables with respect to the

computational variables (‘‘uj , uh , vj , vh , ujj , ujh , uhh , ...’’). vant derivatives (e.g., su , sv , suu , suv , svv) required for the
generation of smooth grids we refer to Piegl [11].Consequently, the application of the elliptic surface grid

generator has been limited to a small spectrum of geome- The current approach which we have adopted utilizes a
three-stage grid generation methodology. The first stagetries due to the lack of a robust mathematical representa-

tion of arbitrary shapes. To overcome this problem, there is the representation of the initial geometry as a computer-
aided design (CAD) surface, where CAD systems typicallyhas been a move towards non-uniform rational B-splines

(NURBS) in grid generation systems. This move follows represent the surfaces of a certain geometry with a set
of structured points or patches. The second stage is thecurrent trends in geometric modeling and computer-aided

geometric design (CAGD). NURBS are becoming the de analytical representation of the CAD surface as a NURBS
surface. The third stage is the generation of structuredfacto industry standard for geometry representation but are

still a rather new ‘‘tool’’ to the grid generation community. surface grid.
It is, of course, the purpose of the present work to con-NURBS allow the representation of nearly all geometries

relevant for aircraft and automobile design. They are par- struct the desired high quality surface grid on a given geom-
etry. To accomplish this task, the grid generation processticularly advantageous for elliptic grid generation due to

their numerical stability and efficient (derivative) evalua- proceeds in two steps. First, an algebraic grid is constructed
by interpolation from the boundaries of the surface, andtion (see Bartels et al. [2] and Farin [4]).

The proposed grid generation method assumes that the the grid is then enhanced, and possibly modified in other
ways, by employing the elliptic system (3.20) andsurface for which the grid is to be constructed is given as

a NURBS surface, (3.21) on the initial grid with prescribed boundary con-
straints.

The process of algebraic grid generation for a parametri-
cally defined surface is divided into three steps: forward
mapping, grid generation, and backward mapping. Thes(u, v) 5

On
j50

Om
i50

gi, j di, j N k
i (u)N l

j(v)

On
j50

Om
i50

gi, j N k
i (u)N l

j(v)
, (4.1)

forward mapping is the mapping of the three-dimensional
physical surface (i.e., a NURBS surface) to a two-dimen-
sional parametric rectangle. Once the forward mapping is
completed, the grid is generated in the parametric space,defined by
using transfinite interpolation (TFI) and then mapped back

• two orders k and l, into physical space (see Fig. 1.). It is important to under-
stand that the type of parametrization does not change the• control points di, j 5 (xi, j , yi, j , zi, j ), i 5 0, ..., m; j 5
shape of the surface, but it does change the distribution0, ..., n,
of the points on it. A ‘‘poor’’ parametrization may cause• real weights gi, j , i 5 0, ..., m; j 5 0, ..., n,
the surface grid to be highly skewed.

• a set of real u-knots, hu0 , ..., um1k u ui # ui11 , i 5 0, ..., The methodology of constructing an m 3 n algebraic
(m 1 k 2 1)j, grid on a physical surface starts either with the specification

of the boundary distribution along the physical boundaries• a set of real v 2 knots, hv0 , ..., vn1l u vj # vj11 , j 5
(then mapped to the parametric boundaries), or with0, ..., (n 1 l 2 1)j,
the distribution of grid points directly on the para-• B-spline basis functions N k

i (u), u [ [ui , ui1k], i 5
metric boundaries. The parametric values used are denoted0, ..., m,
as

• B-spline basis functions N l
j(v), v [ [vj , vj1l], j 5 0, ...,

n, and
M u : hu1, j , u2, j , ? ? ? , um, j u j 5 1, nj, (4.2)

• surface segments si, j(u, v), u [ [ui , ui11], i 5
(k 2 1), ..., m, v [ [vj , vj11], j 5 (l 2 1), ..., n. M v : hvi,1 , vi,2 , ? ? ? , vi,n u i 5 1, mj. (4.3)
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FIG. 1. Mapping from physical (‘‘x, y, z’’) to computational (‘‘j, h’’) space via parametric (‘‘u, v’’) space.

The first step in constructing a parametric grid requires Let
a correspondence to be established between the parametric
space (u, v) and the computational space (j, h) via a distri- M s : h0 5 s1, j , s2, j , ? ? ? , sm, j 5 1 u j 5 1, nj (4.4)
bution space (s, t). A uniform spacing in computational
space is used, i.e., j 5 1, 2, ..., m and h 5 1, 2, ..., n.

be a partitioning of the s-domain [0, 1] and let
Therefore, the computational grid Gjh is defined by integer
coordinates (i, j) where i 5 j and j 5 h. In the next step,

M t : h0 5 ti,1 , ti,2 , ? ? ? , ti,n 5 1 u i 5 1, mj (4.5)the boundary distribution of the (u, v) space is mapped to
the boundaries of the (s, t) space using for example arc

be a partitioning of the t-domain [0, 1]. The distributionlength mapping.
grid Gst 5 Ms ^ Mt partitioning [0, 1] 3 [0, 1] is generated
by solving for the interior points assuming the distribution
points on opposite boundaries are joined by straight lines.

FIG. 3. Conformal surface grid on a rocket geometry.FIG. 2. Conformal surface grid on a singular geometry.
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grid from the elliptic system. Orthogonality of the grid
may be imposed along certain boundary components of the
physical region. Boundary orthogonality can be achieved
through Neumann boundary conditions which allow the
boundary points to float along the boundary of the surface.
Alternatively, the control functions can be determined to
provide orthogonality at boundaries with specified normal
spacing. In case of periodic geometries, reflective boundary
conditions are used. These options have been addressed
in a detailed manner by Khamayseh [6] and incorporated
in the national grid project (NGP) system.

To illustrate the method, we conclude this section by
presenting four numerical examples with different options
of control functions and boundary orthogonalities. In allFIG. 4. Conformal surface grid on a concave–convex geometry.
cases the surface grid is generated on a NURBS surface
using the elliptic system (3.20) and (3.21) with appropriate
control functions and boundary orthogonality. The firstOnce the distribution grid is computed, by some stan-
example, Fig. 2, shows a surface grid constructed on adard technique such as tensor product interpolation or
singular geometry with the option of zero control functions,TFI, the parametric grid Guv 5 Mu ^ Mv is constructed,
i.e., P 5 Q 5 0, and the boundary points were allowed towhere the mapping establishes a one to one correspon-
move to achieve orthogonality, i.e., Neumann-type orthog-dence between the parametric values (ui, j , vi, j ) and the
onality. Using this option produces a uniform smooth grid,computational nodes (si, j , ti, j ). Finally, the surface grid
but the initial boundary distribution has not been pre-Gxyz is constructed using the NURBS representation of the
served.physical coordinates

Figure 3 shows results of the method applied to a real-
world surface geometry. A grid on the surface of a rocketsi, j 5 s(ui, j , vi, j ), i 5 1, ..., m; j 5 1, ..., n. (4.6)
was constructed using zero control functions in the elliptic
smoother. Neumann orthogonality was imposed by ad-The next stage in the process of surface grid generation
justing the location of the nodes along the surface bound-consists of employing the elliptic grid generator (3.20) and
aries.(3.21) using the initial grid as a background grid. The ellip-

Figure 4 demonstrates the use of the method with controltic grid generator is implemented using finite difference
functions computed at the boundaries and then projecteddiscretization and Gauss–Seidel strategy.
into the interior of the grid. In particular, this is advanta-The elliptic system may be applied to the interior grids
geous in the case of the initial grid contains cells with nearand may preserve the original distribution of grid points
zero areas, i.e., J P 0, where we cannot solve for the controlor redistribute points based upon the choice of the ‘‘control
functions from the system (3.20) and (3.21). Initial spacingfunctions’’ P and Q which are commonly used in adaptive
is preserved and Dirichlet orthogonality is applied by fixinggrid generation. The control functions are evaluated either
the boundary distribution and allowing the interior griddirectly from the initial algebraic grid, or by interpolation
points to move using control functions along the boundaryfrom the boundary point distributions and then smoothed.
segments to produce orthogonal grids.In both cases smoothing is done in the directions of the

Finally, we present a grid computed on a periodic geome-control function coordinates. This allows the relative spac-
ing of the algebraic grid to be retained but on a smoother try (see Fig. 5). The elliptic grid was constructed with zero

FIG. 5. Conformal surface grid on a periodic geometry.
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